Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation.
نویسندگان
چکیده
We examined the effect of physiological hyperinsulinemia on insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity in skeletal muscle from six lean-to-moderately obese NIDDM patients and six healthy subjects. A rise in serum insulin levels from approximately 60 to approximately 650 pmol/l increased IRS-1 tyrosine phosphorylation sixfold over basal levels in control muscle (P < 0.01), whereas no significant increase was noted in NIDDM muscle. The reduced IRS-1 phosphorylation in the NIDDM muscle was not related to changes in IRS-1 protein content, since IRS-1 protein expression was similar between control and NIDDM subjects (16.0 +/- 1.7 vs. 22.9 +/- 4.0 arbitrary units/mg protein for control and NIDDM, respectively; NS). Physiological hyperinsulinemia increased PI 3-kinase activity in control muscle twofold (P < 0.01), whereas no increase in insulin-stimulated PI 3-kinase activity was noted in the NIDDM muscle. Furthermore, in vitro insulin-stimulated (600 pmol/l) 3-O-methylglucose transport was 40% lower in isolated muscle from NIDDM subjects (P < 0.05). The present findings couple both reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI 3-kinase activity to the impaired insulin-stimulated glucose transport in skeletal muscle from lean-to-moderately obese NIDDM subjects.
منابع مشابه
Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects.
To determine whether the impaired insulin-stimulated glucose uptake in obese individuals is associated with altered insulin receptor signaling, we measured both glucose uptake and early steps in the insulin action pathway in intact strips of human skeletal muscle. Biopsies of rectus abdominus muscle were taken from eight obese and eight control subjects undergoing elective surgery (body mass in...
متن کاملIncreased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle.
Insulin resistance is predominantly characterized by decreased insulin-stimulated glucose uptake into skeletal muscle. In the current study, we have assessed various aspects of the phosphatidylinositol (PI) 3-kinase pathway in skeletal muscle biopsies obtained from normal, obese nondiabetic, and type 2 diabetic subjects, before and after a 5-h insulin infusion. We found a highly significant inv...
متن کاملReduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes.
To understand better the defects in the proximal steps of insulin signaling during type 2 diabetes, we used differentiated human skeletal muscle cells in primary culture. When compared with cells from control subjects, myotubes established from patients with type 2 diabetes presented the same defects as those previously evidenced in vivo in muscle biopsies, including defective stimulation of ph...
متن کاملCharacterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients.
We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min. Insulin-stimulated (0.6-60 nmol/l) tyrosin...
متن کاملPhosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus.
Insulin resistance during pregnancy provokes gestational diabetes mellitus (GDM); however, the cellular mechanisms for this type of insulin resistance are not well understood. We evaluated the mechanisms(s) for insulin resistance in skeletal muscle from an animal model of spontaneous GDM, the heterozygous C57BL/KsJ-(db/+) mouse. Pregnancy triggered a novel functional redistribution of the insul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 46 3 شماره
صفحات -
تاریخ انتشار 1997